Quadratically constrained quadratic programming for classification using particle swarms and applications
نویسندگان
چکیده
Particle swarm optimization is used in several combinatorial optimization problems. In this work, particle swarms are used to solve quadratic programming problems with quadratic constraints. The approach of particle swarms is an example for interior point methods in optimization as an iterative technique. This approach is novel and deals with classification problems without the use of a traditional classifier. Our method determines the optimal hyperplane or classification boundary for a data set. In a binary classification problem, we constrain each class as a cluster, which is enclosed by an ellipsoid. The estimation of the optimal hyperplane between the two clusters is posed as a quadratically constrained quadratic problem. The optimization problem is solved in distributed format using modified particle swarms. Our method has the advantage of using the direction towards optimal solution rather than searching the entire feasible region. Our results on the Iris, Pima, Wine, and Thyroid datasets show that the proposed method works better than a neural network and the performance is close to that of SVM. KeywordsQuadratic programming; Particle swarms; Hyperplane; Quadratic constraints; Binary classification.
منابع مشابه
Binary classification posed as a quadratically constrained quadratic programming and solved using particle swarm optimization
Particle swarm optimization (PSO) is used in several combinatorial optimization problems. In this work, particle swarms are used to solve quadratic programming problems with quadratic constraints. The central idea is to use PSO to move in the direction towards optimal solution rather than searching the entire feasible region. Binary classification is posed as a quadratically constrained quadrat...
متن کاملA semidefinite relaxation scheme for quadratically constrained
Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...
متن کاملInexact Josephy–Newton framework for variational problems and its applications to optimization
We propose and analyze a perturbed version of the classical Josephy-Newton method for solving generalized equations, and of the sequential quadratic programming method for optimization problems. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version [9, 2], sequential quadratically constrained quadratic programming [1, 4...
متن کاملInexact Josephy–newton Framework for Genereralized Equations and Its Applications to Local Analysis of Newtonian Methods for Constrained Optimization∗
We propose and analyze a perturbed version of the classical Josephy-Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilzed version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian meth...
متن کاملInexact Josephy-Newton framework for generalized equations and its applications to local analysis of Newtonian methods for constrained optimization
We propose and analyze a perturbed version of the classical Josephy– Newton method for solving generalized equations. This perturbed framework is convenient to treat in a unified way standard sequential quadratic programming, its stabilized version, sequential quadratically constrained quadratic programming, and linearly constrained Lagrangian methods. For the linearly constrained Lagrangian me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1407.6315 شماره
صفحات -
تاریخ انتشار 2014